LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION – STATISTICS

FIFTH SEMESTER – NOVEMBER 2009

ST 5500 - ESTIMATION THEORY

Part-A

Date & Time: 3/11/2009 / 9:00 - 12:00 Dept. No.

Max.: 100 Marks

 $(10 \ge 2 = 20)$

 $(5 \times 8 = 40)$

Answer All the questions

1. Define unbiasedness of an estimator with an example.

2. Give an example for a consistent estimator.

- 3. Explain sufficiency of an estimator.
- 4. **Define UMVUE.**
- 5. Show that $\{w (0, \sigma^2), \sigma \rightarrow 0\}$ is not complete.
- 6. Mention any two properties of MLE.
- 7. Define prior distribution.
- 8. Define Risk function.
- 9. What is linear estimation?

10. **Define BLUE.**

PART-B

Answer any FIVE questions

11. State and prove Cramer – Rao inequality.

- 12. If X₁, X₂,...., X_n is a random sample from a normal population N(μ , 1), then show that T = $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$ is an unbiased estimator of $\mu^{2} + 1$.
- 13.Establish Rao Blackwell theorem.

14.Let X₁, X₂,..., X_n be i.i.d. b(1, p) random variables. Show that $T = \sum_{i=1}^{n} X_{i}$.

is a sufficient statistic and also complete for the parameter p.

- 15. Explain the method of moments in estimation.
- 16. A random sample X_1, X_2, \dots, X_n is taken from a normal population with mean zero and variance σ^2 . Find MVUE for σ^2 .
- 17. Explain the general procedure of Bayes estimation.
- 18. Obtain Least Square estimators for the parameters of a linear function $y = \alpha + \beta x$.

PART-C

Answer any two questions

 $(2 \times 20 = 40)$

- 19. a) State and prove Chapman Robbin's inequality.
 - b) Prove that for Cauchy's distribution not sample mean but sample median is a consistent estimator of the population mean.
- 20. a) State and prove Lehmann Scheffe theorem.
 - b) Let X_1, X_2, \dots, X_n be a random sample from a uniform population on $(0, \theta)$. Find a sufficient estimator for θ .
- 21. a) Explain Method of minimum Chi Square and modified minimum Chi Square.
 - b) Estimate α and β in the following distribution by the method of moments. $f(x; \alpha, \beta) = [\beta^{\alpha} / \sqrt{\alpha} (\alpha)] x^{\alpha - 1} e^{-\beta x}, 0 \le x < \infty.$
- 22. a) Obtain the maximum likelihood estimate of θ in $f(x; \theta) = (1 + \theta) x^{\theta}$, $0 \le x \le 1$, based on a random sample of size n. Examine whether it is sufficient for θ .
 - b) Find Bayes estimator of the parameter p of a binomial distribution with x successes out of n given that the prior distribution of p is a beta distribution with parameters α and β .